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Abstract

The dynamic response of vibrating structures is studied with a proposed merger of the standard finite
element method with the more computationally efficient spectral finite element method. First a plate
structure is modelled with a newly developed spectral super element. Then this element is coupled to other
parts that can have a more complex geometry and are modelled entirely with conventional finite elements.
Some numerical examples are given to illustrate and validate the developed method and studies of
numerical stability are also presented. In an accompanying paper the predicted and measured response of a
turbulence excited aircraft panel are compared.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method (FEM) provides a mathematically stable environment to simulate
dynamic response and it also allows complex geometrical structures to be modelled. However,
with high-frequency excitation and distributed random excitation, many structures of interest
require impossibly large computer models.
A number of methods to reduce the number of degrees of freedom (dof) and increase the

computational efficacy have been presented in the past, for example the spectral finite element
see front matter r 2004 Elsevier Ltd. All rights reserved.
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method (SFEM) [1], the transfer matrix method [2], the dynamic stiffness method (DSM) [3,4], the
wave-based method [5] and scale-independent elements [6]. These are all formulated in the
frequency domain and the frequency-dependent formulation simplifies the inclusion of frequency-
dependent material characteristics and boundary condition. The basis functions in these methods
are exact or approximate solutions to the local equations of harmonic motion and the elements
are assembled as in the standard FEM.
For sub structures that have uniform properties along one direction, say, the x-direction,

the local solution on the cross section, i.e. in the yz plane, can conveniently be approximated by
polynomial displacement functions. This two-dimensional finite element technique first
appeared in Ref. [7] and more recently in references describing wave propagation in laminated
composite structures [8,9], thin-walled beams [10,11], rib-stiffened panels [12], anisotropic
shells and beams [13,14], fluid-filled pipes [15,16], pre-stressed and curved shells [17] and
a wind tunnel [11]. This finite element technique will be referred to here as the waveguide
FEM and one of its advantages compared to conventional FEM is that different wave types are
readily identified and can be analysed, allowing for a physical understanding of the investigated
structure.
This study proposes a new application of the waveguide FEM, where the displacement is

described as a combination of found wave solutions. This displacement is then expressed as a
function of the nodal displacement at the waveguide ends and inserted in the equation of virtual
work. Requiring the first variation of these displacements to be zero, the structural response is
found. This method can be seen as a merger of the waveguide FEM with the SFEM and was
named spectral super element method (SSEM).
These spectral super elements are characterized by the ease with which they can be put

into an assembly with proper coupling to neighbouring elements. Hence, large wave-carrying
parts of a structure can be described by this method, whereas smaller parts with complex
geometry are modelled entirely by finite elements. In Ref. [3], a super element was created by
condensing all the interior dof for a finite element method. Then, the remaining dof were reduced
in order to be compatible with the waveguide dof at the joints. With the method presented here
such a reduction is not necessary as long as the same nodes are used at the joints with the FEM
and SSEM.
A somewhat related finite strip method (FSM) [18,19] also uses polynomial displacement

functions to represent the displacement of the cross-section for thin flat-walled structures.
This FSM now exists in a number of variants and has been successfully applied to
composite laminated structures, e.g. Ref. [20]. However, since the displacement in the
direction of the waveguide is described either as a combination of beam eigenfunctions or
polynomial spline functions, the FSM leads to a different analysis than with the SSEM.
Nevertheless, many application areas for the FSM are most likely also worth studying with the
SSEM.
The following is a general theory for a spectral super element. In an accompanying

paper [21] distributed excitation is investigated and the element is used to predict the
turbulent boundary layer (TBL) response of a clamped plate. Much effort was invested
in the validation of the element against similar elements described by either the DSM or
the FEM. Two examples of the coupling of spectral super elements to finite elements
are provided.
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Fig. 1. Plate structure divided into plate strips (a) and single strip element (b).
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2. Waveguide formulation

In this section, the equation of motion for a rectangular plate strip, see Fig. 1, will be derived. A
plate structure can then be seen as built up from a number of such strips. Uniform properties
along the x-direction are assumed in the waveguide formulation described here. For the cross-
section in the yz plane, polynomial displacement functions are prescribed, whereas the nodal
displacements are here considered functions of x. These displacement functions are used as test
functions in a variational approach and thus the equations of motion for the plate strip are found.

2.1. Variational statement

The strain energy of an isotropic thin plate is described in the time domain by for example
Ref. [22, pp. 30–35]. For harmonic motion of the form eiot; where o is angular frequency, it is
possible to let time stretch from minus infinity to plus infinity and then apply Parseval’s identity,
see e.g. Ref. [1]. Thus a similar expression for the strain energy is obtained in the frequency
domain

epot ¼

Z Z Z
e�TCedxdydo, (1)

where � denotes complex conjugate and T denotes transpose. C is the rigidity matrix, which for a
homogeneous isotropic plate is given by

C ¼
C0 0

0 h2

12
C0

 !
with C0 ¼

hE
1�n2

nhE
1�n2 0

nhE
1�n2

hE
1�n2 0

0 0 hE
2ð1þnÞ

0
BB@

1
CCA. (2)

E denotes Young’s modulus, h is the thickness of the plate and n is Poisson’s ratio. The vector e
contains the components of strain, which are linear functionals of the displacement u and its
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spatial derivatives

e ¼
qu

qx

qv

qy

qu

qy
þ

qv

qx

q2w
qx2

q2w
qy2

2
q2w
qxqy


 �T
, (3)

u ¼ ðu v wÞT, (4)

where u; v and w are the displacements in the x-, y- and z-directions, respectively.
The integral of the kinetic energy is given on a similar form by

ekin ¼

Z Z Z
o2rhu�Tudxdydo, (5)

where r is the density of the plate.
Hamilton’s principle states that the true motion of a system is the one that minimizes the

difference between the time integrals of the strain and kinetic energies. For dissipative motion,
Hamilton’s principle does not apply and instead a modified version is used here, see Refs. [1,23].
The dissipative forces are attributed by a, possibly frequency dependent, complex Young’s
modulus in Eq. (2). The functional that is minimized for the true motion of the system is found,
when the complex conjugates of strain and displacements in Eqs. (1) and (5) are replaced with the
complex conjugates of strain and displacement in a mathematically designed adjoint system,
which has negative damping. Furthermore, for linear vibrations different frequency components
do not couple and, for simplicity, only one frequency is considered at a time. The resulting
functional is the Lagrangian L,

L ¼

Z Z
eaTCe � o2rhuaTudxdy, (6)

where superscript a denotes the complex conjugate of the response variable in the adjoint system.
This Lagrangian is minimized for the true motion of the system, subject to the boundary conditions.

2.2. Shape functions

Fig. 1(b) shows a thin strip element with two node points and a width of 2ly: There are four dof
at each node, namely the three displacement components and the rotation about the x-axis. Since
there are all in all eight dof, the shape functions in the y-direction can be represented by
polynomials having eight terms, that is

uðyÞ ¼ c1 þ c2Z; vðyÞ ¼ c3 þ c4Z; wðyÞ ¼ c5 þ c6Zþ c7Z2 þ c8Z3, (7)

where Z ¼ y=ly and ci are constants. Evaluating these functions as well as the rotation dw=dy at
Z ¼ �1 makes it possible to express the displacements as functions of the nodal dof V

uðyÞ ¼ fCuV; vðyÞ ¼ fCvV; wðyÞ ¼ fCwV, (8)

where

fðyÞ ¼ ð1 Z Z2 Z3Þ, (9)

V ¼ ðu1 v1 w1 qw1=qy u2 v2 w2 qw2=qyÞT. (10)
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Indices 1 and 2 denote displacement at nodes 1 and 2, respectively. Cu;v;w are 4� 8 matrices with
all zero elements except for

ðCuÞð1;1Þ;ð1;5Þ;ð2;5Þ ¼
1
2
; ðCuÞð2;1Þ ¼ �1

2
,

ðCvÞð1;2Þ;ð1;6Þ;ð2;6Þ ¼
1
2
; ðCvÞð2;2Þ ¼ �1

2
,

ðCwÞð1;3Þ;ð1;7Þ ¼
1
2
; ðCwÞð1;4Þ;ð3;8Þ;ð4;4Þ;ð4;8Þ ¼ ly=4; ðCwÞð1;8Þ;ð2;4Þ;ð2;8Þ;ð3;4Þ ¼ �ly=4,

ðCwÞð2;3Þ ¼ �3
4
; ðCwÞð2;7Þ ¼

3
4
; ðCwÞð4;3Þ ¼

1
4
; ðCwÞð4;7Þ ¼ �1

4
. (11)
2.3. Evaluation of strain and kinetic energies

The shape functions have been derived for a strip element, see Eq. (8). Given the assumption
that the geometry in the x-direction is constant, the nodal displacements V can be considered as
functions of x. With these shape functions it is possible to rewrite the terms e and u in Eqs. (3) and
(4) as follows:

e ¼ e0VðxÞ þ e1
qVðxÞ
qx

þ e2
q2VðxÞ
qx2

; u ¼ u0VðxÞ, (12)

where

e0 ¼

0

f 0Cv

f 0Cu

0

f 00Cw

0

0
BBBBBBBB@

1
CCCCCCCCA
; e1 ¼

fCu

0

fCv

0

0

2f 0Cw

0
BBBBBBBBB@

1
CCCCCCCCCA
; e2 ¼

0

0

0

fCw

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; u0 ¼

fCu

fCv

fCw

0
B@

1
CA. (13)

Prime denotes differentiation with respect to y. Inserting these expressions in Lagrangian (6)
yields

Ls ¼

Z X2
m¼0

X2
n¼0

qmVaT

qxm
es

mn

qnV

qxn
� o2VaTms

00Vdx, (14)

where

es
mn ¼

Z ly

�ly

eTmCen dy; ms
00 ¼ rh

Z ly

�ly

uT0 u0 dy. (15)

es
mn and m

s
00 are 8� 8 matrices. The derivatives and integrals with respect to y in Eq. (15) are

evaluated exactly, either with Gauss integration or analytically, cf. Refs. [10,12]. The Lagrangian
is so far only evaluated for a single strip element, which is stressed by the superscript s.
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2.3.1. Assembling and imposing boundary conditions

To evaluate the strain and kinetic energies for an assembly of plate strips a Lagrangian is
formulated for each strip. The final Lagrangian, here denoted L, consists of emn and m00;
which are square matrices of size four times the number of nodes in the assembled structure.
These matrices are assembled similar to a conventional finite element method, where the
strip elements are transformed to the global coordinate system. The Lagrangian can thus be
written as

L ¼

Z X2
m¼0

X2
n¼0

qmVaT

qxm
emn

qnV

qxn
� o2VaTm00Vdx, (16)

where emn and m00 have been assembled and are symmetric banded matrices.
Boundary conditions are imposed similar to conventional FEM, i.e. nodal dof of V are

restrained by simply constraining the appropriate rows and columns of emn and m00: For a simply
supported edge on one side, for example, the three first rows and columns would be constrained.

2.4. Equations of motion

The equations of motion are found from Eq. (16) with the calculus of variation as

A4
q4

qx4
þ A2

q2

qx2
þ A1

q
qx

þ A0 � o2M

 �

VðxÞ ¼ 0, (17)

where

A4 ¼ e22; A2 ¼ e02 � e11 þ e20; A1 ¼ e01 � e10; A0 ¼ e00; M ¼ m00. (18)

A3 turns out to be zero for the investigated element and is not included. For curved shell elements
it is non-zero [17] and needs to be accounted for. For reasons of symmetry, the same equation of
motion can be derived for the adjoint system.

2.4.1. Wave solutions and wavenumbers
For a given frequency, Eq. (17) is a set of coupled ordinary differential equations with constant

coefficients. Its solutions are therefore given by exponential functions and a polynomial
eigenvalue problem follows. This problem is then transformed to a standard linear eigenvalue
problem, see for example Refs. [12,24], with solutions of the form

VðxÞ ¼ UEðxÞa, (19)

where a are wave amplitudes and the entries of the diagonal matrix E are given by

ðEÞii ¼ e
kiix�ðkpÞii lx , (20)

where k is a diagonal matrix of eigenvalues. To each component kii the ith column of U
gives the corresponding eigenvector. The wave expressions are scaled for reasons of
numerical stability by factors eðkpÞii lx ; where lx is half the length of the plate to be investi-
gated and

ðkpÞii ¼ kii; ReðkpÞiiX0; else ðkpÞii ¼ �kii. (21)



ARTICLE IN PRESS

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

Frequency [Hz]

W
av

en
um

be
r,

 Im
(κ

) 
[1

/m
]

Fig. 2. Dispersion curves of simply supported plate. Transverse mode shapes are shown next to the curves. %; using 9
assembled element strips for the waveguide formulation; solid, analytical solution.

Table 1

Relative error of predicted wavenumber for plate strip in Fig. 2 at 800Hz

Transverse mode n Number of strip elements

3 9 18

1 1:67e� 6 1:22e� 8 6:80e� 10
2 3:62e� 4 3:52e� 6 2:13e� 7
3 1:94e� 2 1:19e� 4 7:48e� 6
4 2:07e� 1 2:37e� 3 1:60e� 4
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The eigenvalues kii; here also referred to as wavenumbers, are solved numerically for a given
frequency once the equations of motion have been assembled. In Fig. 2 the case of a simply
supported plate is investigated. The resulting dispersion curves using nine strip elements are
shown, where the material characteristics and geometry of the plate are given in Section 4.1.
No damping was used here and the known analytical wavenumbers for flexural waves, e.g.
Ref. [3], are shown as comparison. The analytical and predicted dispersion curves agree very well
and with more elements the relative error of the predicted wavenumbers decreased; a selected
study of convergence is shown in Table 1 for the four first-order transverse modes.
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3. Spectral super element formulation

In this section the dynamic stiffness matrix for a rectangular plate element will be derived. The
wave solutions found in the previous section are used as basis functions for a variational principle.
Similar to a conventional finite element method, the dof are the nodal displacements at the nodes,
see Fig. 3. Experience has shown that it is not always possible to project the wave solutions on the
nodal dof and in order to gain numerical stability a dynamic condensation and a weighted least-
square procedure are proposed here.
3.1. Element displacement functions

The wave solutions, VðxÞ ¼ UEðxÞa; derived in the previous section will be used to describe the
displacement. Now, suppose that at the nodes the displacements Wi are prescribed

B1Vð�lxÞ ¼W1; B2
qVð�lxÞ

qx
¼W2,

B3VðþlxÞ ¼W3; B4
qVðþlxÞ

qx
¼W4, (22)

where Bi are matrices consisting of rows, each filled with zeros except for one entry that is unity in
order to select the dof to be restricted. From Eq. (22) it is possible to solve the wave amplitudes a
as functions of the prescribed nodal displacements and thus write the displacement functions as

VðxÞ ¼ UEðxÞAW, (23)
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where A is found from solving the system

BA ¼ I with B ¼

B1UEð�lxÞ

B2UkEð�lxÞ

B3UEðþlxÞ

B4UkEðþlxÞ

0
BBBB@

1
CCCCA; W ¼

W1

W2

W3

W4

0
BBB@

1
CCCA. (24)

I is an identity matrix of appropriate dimensions. Often, many dof are used in order to obtain the
wave solutions. Then, similar to a modal substructuring, only a few dof are used in the global
model. Thus the number of waves is greater than the number of prescribed boundary conditions,
i.e. vector a has more components than vector W: This in turn means that the system is
underdetermined and there are infinitely many solutions. If not otherwise stated, this system is
solved here in a least-squares sense to the underdetermined system (see command ‘n’ in
MATLAB). The effective rank B of B is determined from an orthogonal–triangular
decomposition with pivoting and a solution for A is computed which has at most B non-zero
components per column.
If it was possible, when deciding among the available wave solutions from which to find the true

displacement of the plate, to select those wave solutions that are the most likely to contribute to
this displacement, then the predictions would become more accurate. With this knowledge, it is
natural to sort the waves according to their transverse mode shapes and then neglect the highest
order mode shapes and possibly also the ones that are not excited by the force. These higher order
mode shapes are usually not accurate as they will have less or close to two nodes per wavelength.
The sampling theorem tells us that these waves will then look similar at the nodes to lower order
waves and sometimes they replaced lower order waves, when projecting the wave solutions onto
the nodal dof. This in turn resulted in a decrease in accuracy that was noticeable especially at very
low frequencies.
In light of the previous discussion three approaches were used in this paper in order to find

matrix A:
�
 Straightforward approach: All waves found were used.

�
 Weighted least-squares approach: All eigenvectors, described by the columns ofU; were scaled to
have an L2-norm equal to 1=jkiij

2; where kii is the corresponding wavenumber to each
eigenvector. In this way an important weighting function is introduced, before the system of
equations (24) is solved with a least-squares method. Wave solutions that have large
wavenumbers, describing a rapid decay, will become discriminated, when projecting the
solutions onto the nodal dof. Instead solutions with small wavenumbers, corresponding to
waves that have cut on or are about to cut on, will be chosen to describe the displacement of the
plate, thereby encouraging the solution to follow Saint-Venant’s principle [25].
�
 Dynamic condensation approach: A reduced set of waves were used in combination with a
dynamic condensation procedure presented in Appendix A. The main idea behind this is that
instead of solving an underdetermined system in a least-squares sense to find A; the virtual work
at the boundary is included in the Lagrangian. This results in a new system of equations that
can be solved by Gaussian elimination alone.
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The difference in predicted response with these three methods is commented on in the section with
numerical results.

3.2. Dynamic stiffness matrix

The element displacement functions are now described by Eq. (23) and from symmetry of the
bi-linear Lagrangian the complex conjugate of the displacement functions for the adjoint system
are similarly given by

VaðxÞ ¼ UEðxÞAWa. (25)

Substituting these displacement functions into Lagrangian (16) yields

L ¼

Z lx

�lx

X2
m¼0

X2
n¼0

WaTAT
qmEðxÞT

qxm
UTemnU

qnEðxÞ

qxn
AW

� o2WaTATEðxÞTUTm00UEðxÞAWdx, ð26Þ

where the identity ðv1v2Þ
T
¼ vT2 v

T
1 was used. Note that the mth derivative of the diagonal matrix

EðxÞ is another diagonal matrix kmEðxÞ: For two diagonal matrices d1 and d2 and another
arbitrary matrix v of appropriate dimension the following holds:

d1 v d2 ¼ v: � ðdiagðd1Þdiagðd2Þ
T
Þ, (27)

where the operator diag produces a column vector from its argument’s main diagonal and :�
denotes element wise multiplication (as in MATLAB). Using identity (27), Lagrangian (26) can be
rewritten as

L ¼WaTDW, (28)

where the dynamic stiffness matrix D is given by

D ¼ ATðH: � EIÞA, (29)

H ¼
X2
m¼0

X2
n¼0

ðkmðUTemnUÞknÞ � o2ðUTm00UÞ

 !
, (30)

EI ¼

Z lx

�lx

ðdiagEðxÞÞðdiagEðxÞÞT dx. (31)

The integral in Eq. (31) is solved analytically and consequently the entries of the matrix generating
function EI are given by

ðEIÞij ¼ ððekiiðþlxÞ�ðkpÞii lxÞðekjjðþlxÞ�ðkpÞjj lxÞ

� ðekiið�lxÞ�ðkpÞii lxÞðekjjð�lxÞ�ðkpÞjj lxÞÞ=ððkÞii þ ðkÞjjÞ. ð32Þ

With the scaling introduced in Eq. (20) this expression can be evaluated for large k and a Taylor
expansion was applied for small values of kii þ kjj:
The dynamic stiffness matrix (29) does not depend on the excitation of the structure. An

arbitrary forcing p can be considered by the inclusion of the virtual work of this force in the
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Lagrangian, as in Refs. [1,26],

Lf ¼

Z lx

�lx

Z ly

�ly

�p�Tu� uaTpdydx ¼ �F�TW�WaTF, (33)

where F is a generalized force vector. In this paper only point forces at node locations are
considered and the integral is then trivial to evaluate. However, for distributed excitation, as
shown in an accompanying paper, a particular solution to the non-homogeneous equations of
motion has to be included in the formulation and the above integral has to be calculated explicitly
[21]. Requiring the first variation with respect to the nodal displacements of the adjoint systemWa

to be zero in Eqs. (28) and (33), a system of equations for the nodal displacement W is found

DW ¼ F. (34)

Solving Eq. (34) gives the nodal displacementsW and from Eqs. (8) and (23) the displacement of
the structure at any position is given.

3.3. Coupling with conventional finite elements

It is convenient to model small and geometrically complicated parts of a structure with
conventional finite elements. Assuming harmonic motion, the dynamic stiffness matrix is

D ¼ KFEM � o2MFEM, (35)

where MFEM is the inertia matrix and KFEM is the stiffness matrix. These are described, for
example, in Ref. [22]. To couple a spectral super element with conventional finite elements, the
shared nodal dof are set equal making the assembly process the same as for conventional finite
elements. However, since there are no nodes along two sides of the structure, these sides cannot be
coupled this way.
4. Validation

4.1. Investigated structures

Two different plate structures will be investigated here, described below as test cases (a) and (b).
Both these structures had a length Lx of 76.8 cm and a width Ly of 32.8 cm, a Young’s modulus E
of 7� 10N=m2; a density of 2700 kg=m3 and a Poisson ratio of 0.33. Damping was modelled with
a complex Young’s modulus Eð1þ iZÞ; where Z was 0.02. Fig. 4(a) and (b) show the geometry for
these two test cases. The global coordinate system has its origin in the lower left corner of the
respective structures.
In test case (a), the plate consisted of two coupled plates. Plate 1 had a thickness h of 1.6mm

and a length of 2Lx=3; whereas plate 2 had a thickness of 3.2mm and a length of Lx=3: A vertical
point force exciting only flexural waves was applied at ðx ¼ 2Lx=3; y ¼ 5Ly=9Þ and the response
was calculated at ðx ¼ 28Lx=57; y ¼ 4Ly=9Þ: Two opposite sides of the plate structure were simply
supported and the other two clamped. The main reason for studying this case was the fact that
there exists an analytical solution given for example by a spectral finite element method or a
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dynamic stiffness method, see Ref. [27]. Against this solution three different methods could be
tested for accuracy and efficiency:
�
 A spectral super element method with one element for each plate (SSEM).

�
 A spectral super element for plate 1 coupled to a finite element method for plate 2
(SSEM–FEM).
�
 A finite element method to model both plates (FEM).

Ten nodes were used in the y-direction for both the SSEM and the FEM and it was therefore easy
to couple the two methods. For the FEM, plate 1 was modelled with 10� 20 nodes and plate 2
with 10� 10 nodes, i.e. all in all 252 elements as compared to two elements with the SSEM. The
non-conforming finite element that was used for the plate is often referred to as ACM element and
is described in for example Ref. [22, Chapters 4.2 and 6.1].
In test case (b), the investigated structure consisted of five plate structures, see Fig. 4(b). These

were all modelled with 19 transverse nodes in order to make it easy to couple all plates. The
stringer was modelled entirely with finite elements; plates three, four and five consisted of 19� 4;
19� 4 and 19� 3 nodes, respectively. Plates 1 and 2 were modelled either with finite elements
(FEM) or with spectral super elements coupled with the finite elements of the stringer
(SSEM–FEM). The number of nodes and elements were increased with a factor four compared to
test case (a) in order to reduce the error of the FEM, i.e. approximately 1000 finite elements or 2
superspectral elements. All plates had a thickness h of 1.6mm, except for plate 3 with a thickness
of 3.2mm. The length of plates 1–5 was 480, 280, 8, 28 and 10mm, respectively. A horizontal
point force was applied at the free edge of plate 5 with ðy ¼ 7Ly=9Þ; and the response was
calculated at plate 1 with ðx ¼ 35Lx=76; y ¼ 5Ly=9Þ:

4.2. Numerical results

Fig. 5 compares the transfer mobility for test case (a). Up to approximately 400 Hz all methods
agree well with the analytical solution. Then the FEM starts to become erroneous and soon after
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Fig. 5. Transfer mobility for test case a. Solid line, analytical and equally SSEM; dashed, SSEM–FEM; dotted, FEM.
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the method, where one spectral super element is coupled to finite elements (SSEM–FEM) also
starts to show large errors. Around this frequency the third transverse mode cuts on, see Fig. 2,
and thus there will be less than six nodes per structural wavelength. The best method is the SSEM,
which stays quite accurate also at frequencies well above 1000Hz, i.e. even after the fourth- and
fifth-order transverse modes have cut on. Hence, the SSEM seems to be more forgiving than the
FEM, if less transverse nodes are used per structural wavelength. Furthermore, the number of dof
was reduced with the SSEM by a factor 27, from 972 down to 36, as compared to the FEM. Fig. 6
shows the relative error in the predicted transfer mobility averaged over third octave bands. The
relative error of the SSEM is almost a factor 100 lower than the one for the FEM. The
SSEM–FEM was an improvement compared to the FEM, mainly due to the fact that the smallest
and thickest element was modelled with the FEM. If ever more of the structure is modelled with
the finite elements, then naturally the error will increase. The cost to mesh the smaller element
slightly finer is not too expensive, however, and thereby the error can be reduced quite
significantly.
At very low frequencies the relative error suddenly starts to increase with the SSEM. Analysis

showed that the reason for this is that most waves in the structure, found from solving the
equations of motion, are non-propagating at this frequency. It is then difficult to solve Eq. (21) for
A without some numerical conditioning. This problem was mentioned in Section 3.1 along with
two approaches to handle it, i.e. a weighted least-squares and a dynamic condensation approach.
Fig. 7 shows the relative error with the weighted least-squares approach compared to the
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straightforward approach. As can be seen the main difference occurs at low frequencies,
where a great improvement in accuracy was obtained with the weighted least-squares approach.
If the number of transverse nodes was increased, the relative error decreased and the
figure shows how this error would decrease by about a factor of 10 if the number of nodes
were doubled.
The dynamic condensation approach gave a similar improvement and is not shown. Whenever

waves were removed with the dynamic condensation approach, it was important to keep the right
amount to ensure enough independent waves to project on the nodal dof. Failure to do so resulted
in numerical instability. On the other hand with too few removed the approach sometimes had no
effect at all. Therefore, the weighted least-squares approach seemed advantageous for the test
cases studied in this paper and from now on all predictions are made with this approach unless
stated otherwise.
Figs. 8 and 9 compare the transfer mobility for test case (b). The response was calculated

using either a FEM or a SSEM coupled with a FEM, see Section 4.1. Fig. 8 compares the
out-of-plane response from the horizontal point force on the stringer and shows a very good
agreement between FEM and SSEM–FEM. However, if all waves found from solving the
equations of motion are used without any weighting, the SSEM becomes unstable at certain
frequencies. Fig. 9 compares the in-plane response from the same point force and shows a similar
good agreement.
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5. Conclusion

A new spectral super element for the analysis of structural vibration at high frequencies has
been presented. It describes the motion as a combination of travelling and decaying waves along
the structure. These waves are given by a waveguide finite element model, which is versatile and
efficient. A major difficulty was to project these waves onto the nodal dof at the element ends and
thus select which waves to use when describing the motion of the element. This difficulty was
overcome by employing either a weighted least squares or a dynamic condensation approach.
The developed element is useful for structures that are uniform along a single coordinate axis

but otherwise arbitrary in material composition and geometry. With the SSEM a considerable
reduction in dof can be achieved, which provides increased computational efficiency.
Furthermore, since the SSEM has compact support and is formulated in terms of the nodal
displacements at the ends, it can easily be coupled to a conventional finite element method. In an
accompanying paper the element will be used to predict the response to a turbulence excited
aircraft panel [21].
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Appendix A. Dynamic condensation

To improve the numerical stability, when projecting the wave amplitudes on the nodal dof, an
alternative way to formulate the dynamic stiffness matrix will be outlined here. The virtual work
at the boundary will be included in the Lagrangian and thus the wave amplitudes are solved as
functions of the nodal displacements.
Restraints (22) are included into the variational formulation using Lagrange multipliers and the

following terms are added to Lagrangian (16):

LB ¼ kaT
ðBa�WÞ þ ðBaa �WaÞ

Tk, (A.1)

where the components of k and ka are Lagrange multipliers. The wave solutions are still expressed
as functions of the unknown wave amplitudes a; see Eq. (19). The functional is now given by
L þ LB and it is stationary for the true motion of the structure subject to restraints (22). Thus
upon taking the first variation of aa and ka; the following set of equations results:

ðH: � EIÞ BT

B 0

 !
a

k


 �
¼

0

W


 �
. (A.2)

From Eq. (A.2) the wave amplitudes can be solved, if it is successively required that one entry of
W is unity and all other entries are zero. Thus the displacement functions for any nodal
displacement W can be written as

VðxÞ ¼ UEðxÞAdW, (A.3)

where Ad is found from solving the system

ðH: � EIÞ BT

B 0

 !
Ad

K


 �
¼

0

I


 �
, (A.4)

and is given explicitly as

Ad ¼ ðH: � EIÞ
�1BTðBðH: � EIÞ

�1BTÞ�1I. (A.5)

I is an identity matrix of appropriate dimensions. The same procedure applies also for the adjoint
system and, if these newly found displacement functions are inserted in Lagrangian (16), the
following dynamic stiffness matrix results

D ¼ ATd ðH: � EIÞAd, (A.6)

where H: � EI is the same as before, see Eqs. (30)–(32).
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